On the (non)rigidity of the Frobenius Endomorphism over Gorenstein Rings

نویسندگان

  • HAILONG DAO
  • JINJIA LI
  • CLAUDIA MILLER
چکیده

It is well-known that for a big class of local rings of positive characteristic, including complete intersection rings, the Frobenius endomorphism can be used as a test for finite projective dimension. In this paper, we exploit this property to study the structure of such rings. One of our results states that the class groups cannot have any p-torsion, thus providing a purely algebraic proof of that fact for complete intersections, first given in SGA. Our method also leads to many simply constructed examples where rigidity for the Frobenius endomorphism does not hold, even when the rings are Gorenstein with isolated singularity. This is in stark contrast to the situation for complete intersection rings. Also, a related length criterion for modules of finite length and finite projective dimension is discussed towards the end.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

G-dimension over Local Homomorphisms. Applications to the Frobenius Endomorphism

We develop a theory of G-dimension over local homomorphisms which encompasses the classical theory of G-dimension for finitely generated modules over local rings. As an application, we prove that a local ring R of characteristic p is Gorenstein if and only if it possesses a nonzero finitely generated module of finite projective dimension that has finite G-dimension when considered as an R-modul...

متن کامل

Gorenstein homological dimensions with respect to a semi-dualizing module over group rings

Let R be a commutative noetherian ring and Γ a finite group. In this paper,we study Gorenstein homological dimensions of modules with respect to a semi-dualizing module over the group ring  . It is shown that Gorenstein homological dimensions  of an  -RΓ module M with respect to a semi-dualizing module,  are equal over R and RΓ  .

متن کامل

GENERALIZED GORENSTEIN DIMENSION OVER GROUP RINGS

Let $(R, m)$ be a commutative noetherian local ring and let $Gamma$ be a finite group. It is proved that if $R$ admits a dualizing module, then the group ring $Rga$ has a dualizing bimodule as well. Moreover, it is shown that a finitely generated $Rga$-module $M$ has generalized Gorenstein dimension zero if and only if it has generalized Gorenstein dimension zero as an $R$-module.

متن کامل

On SPAP-rings

In this paper we focus on a special class of commutative local‎ ‎rings called SPAP-rings and study the relationship between this‎ ‎class and other classes of rings‎. ‎We characterize the structure of‎ ‎modules and especially‎, ‎the prime submodules of free modules over‎ ‎an SPAP-ring and derive some basic properties‎. ‎Then we answer the‎ ‎question of Lam and Reyes about strongly Oka ideals fam...

متن کامل

$PI$-extending modules via nontrivial complex bundles and Abelian endomorphism rings

A module is said to be $PI$-extending provided that every projection invariant submodule is essential in a direct summand of the module. In this paper, we focus on direct summands and indecomposable decompositions of $PI$-extending modules. To this end, we provide several counter examples including the tangent bundles of complex spheres of dimensions bigger than or equal to 5 and certain hyper ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009